Inside Science
/
Article

Iron Deposits in Pigeon Ears are Useless for Navigating

NOV 15, 2021
New research suggests the birds must sense Earth’s magnetic field using some other part of their anatomy.
Iron Deposits in Pigeon Ears are Useless for Navigating lead image

Iron Deposits in Pigeon Ears are Useless for Navigating lead image

Phillip Allaway via Shutterstock

(Inside Science) -- Many animals can sense things that humans cannot -- the humble pigeon, for instance, is capable of sensing and navigating via the Earth’s invisible geomagnetic field. Scientists have long been interested in how this is possible. Now, a new study published in the journal PNAS suggest that promising structures in the pigeons’ inner ears are not, in fact, the answer.

A few different parts in the pigeon’s anatomy have been suggested as sources of magnetoreception, including structures in the eye and in the region of the pigeon’s beak. But the inner ear has also been a candidate, due to the presence of iron-rich, roughly ball-shaped objects called cuticulosomes within sensory cells of the ear.

In this new study, scientists in Australia and Europe investigated these structures by taking thin slices of tissue from a pigeon’s inner ear and laying them on top of flat diamond chips. The chips fluoresce, and this fluorescence can be intensified or dimmed by nearby magnetic substances such as the cuticulosomes. Using a camera and a microscope to measure these changes, the scientists were able to estimate how sensitive the cuticulosomes would be to the Earth’s magnetic field.

They found that the cuticulosomes were five orders of magnitude too weak to function as particle-based magnetoreceptors, potentially eliminating them as options for how pigeons navigate.

These results could help scientists narrow their investigations into the sensory universe of pigeons. “If you rule out one particular candidate, that draws us closer to finding out what the true mechanism by which they use the Earth’s magnetic field to navigate could actually be,” said Rob de Gille, first author of the paper and a doctoral candidate at the University of Melbourne in Australia.

As for what the cuticulosomes may actually be doing, scientists aren’t sure. Cuticulosomes are also found in other bird species such as ducks, chickens, and ostriches, and it’s been suggested that they may provide a kind of iron storage or may help stabilize parts the ear cells. “It’s very strange to just have a ball of iron sitting in there. Presumably it’s doing something,” said de Gille.

The results also suggest that the technology used in this study could be useful in investigating how other animals use magnetoreception or use magnetic substances in their bodies.

“Developing new methods of microscopy can open up new avenues for research into these really interesting problems,” said de Gille. “If you want to know about something, the best way to do it is to look at it.”

More Science News
FYI
/
Article
The FAIR model proposed by higher ed associations may be on the table for fiscal year 2027.
APS
/
Article
In an interview, the 2026 APS president outlines his career, his goals for the year, and where he finds optimism in challenging times.
AIP
/
Article
Leaders across scientific societies weigh in on AIP’s 2026 research agenda
/
Article
/
Article
The availability of free translation software clinched the decision for the new policy. To some researchers, it’s anathema.
/
Article
Lightning is sometimes described as just a big spark. But just how big can the spark get? Satellite sensors say … very!
/
Article
The Nancy Grace Roman Space Telescope will survey the sky for vestiges of the universe’s expansion.
/
Article
An ultracold atomic gas can sync into a single quantum state. Researchers uncovered a speed limit for the process that has implications for quantum computing and the evolution of the early universe.