News & Analysis
/
Article

Instabilities elucidate dynamics of supernovae blasts

MAR 10, 2023
Group theory approach examines how fluid instabilities intensively mix materials as stars explode.
Ashley Piccone headshot
Press Officer AIP
Instabilities elucidate dynamics of supernovae blasts internal name

Instabilities elucidate dynamics of supernovae blasts lead image

Supernova remnants encapsulate information about stellar evolution and the formation of heavy elements. Modeling supernovae is extremely difficult because it requires an in-depth understanding of complex physical processes, such as fluid instabilities and interfacial mixing.

Abarzhi et al. used group theory to explore fluid instabilities in supernovae, revealing that the dynamics at early and late times are strongly influenced by initial conditions.

“We want to work backward from the supernova remnant to the underlying explosion to provide insights into the event and reveal the star’s birth, life, and death,” said author Snezhana Abarzhi. “So, we need to know the details of what explodes at microscopic scales, quantify the explosion’s conditions at macroscopic scales, and reveal the information imprinted in astronomical observations.”

To accomplish this, the team analyzed Rayleigh-Taylor (RT) and Richtmyer-Meshkov (RM) instabilities. The former develops at the interface between two liquids with distinct densities when they are accelerated against the density gradient.

“In everyday life, we observe RT instability when watching water flowing from an overturned cup. The heavy fluid on the top is water, while the light fluid on the bottom is air and the acceleration is gravity,” said Abarzhi. “RM instability develops when the acceleration is impulsive. A supernova’s blast causes the development of RT and RM instabilities and intense interfacial mixing.”

The researchers were able to directly link the conservation laws of RT and RM dynamics to a symmetry-based momentum model. In doing so, they found that, from a fluid dynamics perspective, supernovae can be regarded as an astrophysical initial value problem.

These results will inform high energy density plasma experiments and astronomical observations.

Source: “Fluid dynamic mathematical aspects of supernova remnants,” by Snezhana I. Abarzhi, Desmond L. Hill, Kurt C. Williams, Jiahe T. Li, Bruce A. Remington, David Anthony Martinez, and W. David Arnett, Physics of Fluids (2023). The article can be accessed at https://doi.org/10.1063/5.0123930 .

Related Topics
More Science
/
Article
Approach provides way for designers to assess losses in the driving bearing in compressors and optimize their efficiency
/
Article
Fluid dynamics study reveals how air flow spreads cooling created with urban greening projects.
AAS
/
Article
Though less destructive than coronal mass ejections, moderate space weather events like stream interaction regions can still cause geomagnetic storms. Researchers have used machine learning to investigate the drivers behind these events.
AAS
/
Article
Schmidt Sciences has unveiled details on four ambitious observatories to monitor the dynamic cosmos, with data from all four expected by 2029.