News & Analysis
/
Article

Crossover behavior seen in symmetries of rare earth nickelate solutions

SEP 03, 2021
A study of rare earth nickelates found a mixing of symmetries during phase transition.

DOI: 10.1063/10.0005844

Crossover behavior seen in symmetries of rare earth nickelate solutions internal name

Crossover behavior seen in symmetries of rare earth nickelate solutions lead image

Perovskite oxide are a large family of materials with physical properties ranging from superconductivity to ferroelectricity due to their flexible lattice structure. These materials can be subtly tuned to enhance specific characteristics, making them of interest to new material design.

Fowlie et al. delve into the symmetries of rare earth perovskites oxides with a study of neodymium nickel (III) oxide and lanthanum nickel oxide thin film solutions. These nickelate materials have distinct space-groups but the same perovskite structure. The authors investigated how symmetry transitions occur in a solution where lanthanum replaces neodymium.

Using Raman spectroscopy, which allowed a look at the symmetries and phase transitions, and scanning transmission electron microscopy, to investigate the atomic-scale evolution, the authors analyzed the transition in solid solution thin films of the materials. Unexpectedly, the results showed not a true crossover but two coexisting symmetries during the evolution between phases.

“From the Raman spectroscopy, it looked like the two series of samples were identical,” said co-author Jennifer Fowlie. “It was only when we used scanning transmission electron microscopy to really look at an atomic level that we saw it’s actually not so similar between the two systems. In the end, we needed both Raman spectroscopy and STEM to see the full picture.”

The symmetry differences seemed to depend on the substrate used and the way the film is grown, among other variables. The authors would like to continue studying characteristics of such materials. Different electric and magnetic behaviors might be expected in the unique symmetry groups as they might affect the bond angle and bond lengths.

These findings may ultimately help in future development of perovskite oxide material design.

Source: “Crossover between distinct symmetries in solid solutions of rare earth nickelates,” by Jennifer Fowlie, Bernat Mundet, Constance Toulouse, Alexander Schober, Mael Guennou, Claribel Domínguez, Marta Gibert, Duncan T. L. Alexander, Jens Kreisel, and Jean-Marc Triscone, APL Materials (2021). The article can be accessed at https://doi.org/10.1063/5.0057216 .

Related Topics
More Science
/
Article
Understanding the acoustics of Chinese interlocked timber-arched covered bridges is important for conserving their cultural histories.
/
Article
Highly detailed simulations of the coronary artery only need one to two heartbeats to calibrate, rather than the standard five-plus
/
Article
Understanding the distribution of nanoparticles injected into a tumor can guide clinical cancer treatments.
/
Article
Drop dynamics investigation helps assess rain-induced pollution spread.