News & Analysis
/
Article

Increasing the collection efficiency of single photon sources for quantum technology

MAR 19, 2021
Optimized coupling between quantum dots and nanoantennas resulted in a record-high collection efficiency of single photons.

DOI: 10.1063/10.0003917

Increasing the collection efficiency of single photon sources for quantum technology internal name

Increasing the collection efficiency of single photon sources for quantum technology lead image

Efficient single photon sources have applications in various quantum technologies, such as quantum key distribution and quantum metrology. Quantum dot emitters provide on-demand production of single photons, but the photons are emitted in all directions, which results in low collection efficiency.

Abudayyeh et al. increased the directionality of photons emitted from quantum dots operating at room temperature by placing them in nanoantennas. They achieved a record-high collection efficiency of 85% of the emitted single photons.

The nanoantennas directed the photons in a single direction, increasing the number of collected photons. The authors optimized the coupling between the antennas and quantum dots with improved antenna fabrication techniques and enhanced quantum dots known as CdSe/CdS core/thick-shell or giant quantum dots, which are non-blinking and non-photobleaching at room temperature.

“We have come up with a novel fabrication and placement method that enables us to reach record-high collection efficiencies even with such broadband emitters,” said author Hamza Abudayyeh.

The authors hope the nanoantenna fabrication method they developed will aid in the eventual application of the antennas. Unlike previously used indeterministic or single-try methods, their placement method, dip-pen nanolithography, allowed them to directly and precisely write the quantum dots in the nanoantennas. This method is more suitable for scaling. The quantum dots also demonstrated high photon rates of many emitted photons.

The authors plan couple these on-chip, room temperature nanoantenna-emitter devices with a fiber to produce plug-and-play single photon sources with high collection efficiencies.

Source: “Single photon sources with near unity collection efficiencies by deterministic placement of quantum dots in nanoantennas,” by Hamza Abudayyeh, Boaz Lubotzky, Anastasia Blake, Jun Wang, Somak Majumder, Zhongjian Hu, Younghee Kim, Han Htoon, Riya Bose, Anton V. Malko, Jennifer A. Hollingsworth, and Ronen Rapaport, APL Photonics (2021). The article can be accessed at https://aip.scitation.org/doi/full/10.1063/5.0034863 .

Related Topics
More Science
/
Article
To study pattern formation, researchers used a method called the landscape-flux framework — which can be extended to other spatial pattern systems, including embryo development, plant formations, and turbulence.
/
Article
The electric-hydrogen-ammonia coupled microgrid has the potential to address supply-demand imbalance in the transition towards renewable energy sources.
/
Article
Pumped hydroelectric energy storage in sediment-laden rivers can lead to equipment failure and higher maintenance costs.
/
Article
Combining equilibrium and non-equilibrium approaches separates fluid into near-wall and bulk fluid regions, showing that all fluids exhibit some amount of slip.