Approach promises large-scale cell patterning in microchannels
DOI: 10.1063/10.0000645
Approach promises large-scale cell patterning in microchannels lead image
Cell patterning has become a widespread, high-throughput approach for artificially constructing organic specimens. Generating samples capable of holding different cell types, however, remains a challenge. New work looks to make fabricating such arrays easier and provide a path forward for better understanding cell-to-cell interactions.
Rima et al. present an approach for engineering large-scale arrays of cells within a microchannel using a technique called microstamping. The resulting microchannels feature surfaces whose chemistry can be altered to further tailor cell patterning by controlling specific cell types that can be placed both hydrodynamically and by self-assembly into the stamped pattern.
Such work marks one of the first successful attempts to pattern cells using two distinct methods in a microchannel.
“As engineers, we were inspired by cell patterning, since spatially organizing cells can help in demystifying the complex cellular language present within the human body,” said author Eduardo Reategui. “The use of a microchannel allows for controlled, small-volume investigations and also aided in reducing secondary adhesion without the use of chemistries outside of what was needed to pattern the cells.”
The team demonstrated its use by creating a system in which H1568 cells from non-small cell lung cancer disrupted communication between neutrophils, workhorse cells in the immune system.
The approach patterned cells hydrodynamically with 93 percent efficiency and by self-assembly with 68 percent efficiency, all with negligible cell adhesion.
When introduced, the H1568 cells hindered neutrophils’ ability to coordinate a normal response, indicating the important roles of inflammatory mediators within the tumor’s microenvironment.
The group looks to continue its work by creating other platforms that facilitate intercellular communication with the use of extracellular vesicles capable of carrying membrane-bound particles.
Source: “Surface engineering within a microchannel for hydrodynamic and self-assembled cell patterning,” by Xilal Y. Rima, Nicole Walters, Luong T. H. Nguyen, and Eduardo Reategui, Biomicrofluidics (2019). The article can be accessed at https://doi.org/10.1063/1.5126608