News & Analysis
/
Article

Sorting droplets with acoustic waves

DEC 15, 2023
In a study of droplets larger than the Rayleigh limit, researchers found the acoustic power required to initiate suspension is dependent on droplet size.
Sorting droplets with acoustic waves internal name

Sorting droplets with acoustic waves lead image

150 years ago, German physicists demonstrated that matter could be manipulated with sound waves. In the decades since, researchers have extensively studied this phenomenon and have discovered many applications for it, such as medicine, food, and chemical science.

To date, the vast majority of this research has focused on particles smaller than the Rayleigh limit. Thirisangu et al. extended this work by studying the suspension of larger particles that are comparable in size to the wavelength of the acoustic wave.

To study the interplay between the acoustic force and gravity, the researchers placed water droplets in an oil-filled quartz minichannel. A piezoelectric transducer attached to the bottom of the minichannel generated acoustic waves and a high-speed camera recorded the droplets’ resulting behavior.

Small droplets below the Rayleigh limit exhibit uniform behavior when suspended by acoustic waves. However, the researchers discovered that larger droplets have more complex interactions dependent on their size.

“Surprisingly, we found that the critical acoustic power required to suspend the droplet is a function of the droplet size,” said author Karthick Subramani. “This finding excited us since it provides a novel way of sorting the larger droplets based on the critical power, as demonstrated in our work.”

The novel sorting method could be applied for the recovery of droplets from emulsion, which is important in the chemical and petroleum industries, Subramani said. The authors are currently working on theoretical and simulation frameworks to predict, explain, and expand their experimental findings, which could also aid in understanding the fundamentals of suspending larger particles.

Source: “Suspending droplets beyond the Rayleigh limit: The interplay of acoustic and gravity forces,” by Jeyapradhap Thirisangu, E. Hemachandran, and Karthick Subramani, Physics of Fluids (2023). The article can be accessed at https://doi.org/10.1063/5.0171492 .

Related Topics
More Science
/
Article
A design combining coaxial cable transmission and a cylindrical resonant cavity improves the portability and efficiency of large-sized, low-temperature plasma jet devices.
/
Article
Thermodynamic modeling shows greater pump performance and reliability using only half the energy
/
Article
Though lines of trees are an important part of a neighborhood’s meteorology, the way their wakes interact with one another is rarely considered in urban planning.
/
Article
An Eulerian-Lagrangian two-phase flow numerical model quantifies wind-sand interaction for protecting low-rise buildings against sandstorms.