News & Analysis
/
Article

In-situ cleaning technique improves extreme ultraviolet lithography efficiency

SEP 16, 2022
Method could extend collector mirror lifetimes indefinitely, expanding EUVL tool availability.
In-situ cleaning technique improves extreme ultraviolet lithography efficiency internal name

In-situ cleaning technique improves extreme ultraviolet lithography efficiency lead image

Extreme ultraviolet lithography (EUVL) is a promising technology for next-generation microchip fabrication. The challenge is that tin contaminates the collector mirror, which degrades the etching process. Microchip manufacturers address contamination by removing the collector and cleaning it with hydrogen plasma. But the process results in significant EUVL downtime.

Qerimi et al. developed an annular surface wave plasma (SWP) antenna technology that is integrated into the collector for in-situ tin removal. They showed that by affixing eight SWP antennas to the mirror — two to the inner cone and six to the outer perimeter — the collector is kept free from tin buildup during etching.

“Our technique could extend collector lifetimes indefinitely, expanding EUVL tool availability,” author David Ruzic said.

Extreme ultraviolet light with a 13.5 nanometer wavelength is generated by directing a carbon dioxide laser at molten tin droplets, ionizing them into a plasma for etching. The ions interact with the collector wall, causing vapor buildup. Hydrogen plasma is used to break the bonds between the tin particles and collector wall, forming gaseous tin hydride, which is removed through pumping.

The SWP antennas generate hydrogen radicals and atoms at the desired etching locations, enabling high etch rates that surpass the contamination rate by a factor of 20. The researchers found the cleaning efficiency would be even greater if the power for each antenna could be raised. They also tested the arc antenna attached to the perimeter of the collector with varying pressure and discovered plasma coverage increases at lower pressures.

“The goal is to cover every surface exposed to tin vapor with SWP,” Ruzic said.

Source: “Tin removal by an annular surface wave plasma antenna in an extreme ultraviolet source,” by Dren Qerimi, Andrew Herschberg, Gianluca Panici, Parker Hays, Tyler Pohlman and David N. Ruzic, Journal of Applied Physics (2022). The article can be accessed at https://doi.org/10.1063/5.0094375 .

Related Topics
More Science
AAS
/
Article
Astronomers at the South African MeerKAT observatory have discovered the most distant flash of radio waves to date, most likely stemming from activity around a magnetar.
AAS
/
Article
JWST provides new evidence that one of our nearest neighbor stars, Alpha Centauri A, might host a giant planet in its habitable zone.
APS
/
Article
A radio-frequency field can be resonant with nuclear spins in a sample even if its frequency does not match a spectroscopic transition—a result that could enable new forms of NMR spectroscopy.
AAS
/
Article
When a supermassive black hole captures a significantly smaller object, the interaction could produce gravitational waves that have not yet been detected. A new study explores such events and how future gravitational wave detectors may be able to feel them for years to come.